

Accessing the Designer/2000 Repository Tables
Jeffrey M. Stander

Director & Principal Consultant

ANZUS Technology International.

Presen ted at Oracle Openworld Australia 1996

Oracle Open World 1996 Paper 106 / Page 1

Accessing the Designer/2000 Repository Tables1

OBJECTIVES
• To present a basic understanding of the views and underlying tables which constitute the

meta-model structure of the Repository Database Design Model.
• To present techniques that will enable a database designer to create custom views based

on the repository views and tables which can be used to size database objects, analyse
tablespace requirements, and create storage definitions for each object.

ABSTRACT
The underlying views and tables in which the Designer/2000 Repository stores it's
information are confusing at first glance, but with a little understanding of the Repository
Database Design Model it is not difficult to create custom views and SQL statements that can
be used to:
• create DDL directly for generating tables, views, indexes and constraints which are

defined in the Repository
• link to a spreadsheet to provide the basis for interactive tablespace, table and index size

analysis
• easily create custom reports (e.g. table-column usage, index usage, etc.) in text format or

linked to a spreadsheet or word processor without resorting to the Report Generator
• create tools for validating a database against the repository.
This paper gives an overview of the Repository Data Model, discusses how to create custom
views on the Repository Data Model, and presents examples of the above applications.

1 This paper is available on the website of the Tasmanian Oracle Users Group: http://lad.med.utas.edu.au/toug or
from the author at willstand@acslink.aone.net.au.

Paper 106/Page 2

CDI_TEXT contains the text for WHERE
clauses, free-format view SELECT statements,
check constraint definitions, etc.

INTRODUCTION
Oracle's Designer/2000 is a CASE tool that
attempts to include enough functionality to serve
as the basis for design or re-engineering of any
database. It can be used, among other functions,
to model business functions, design and generate
forms and reports modules, and estimate module
development time. This paper focuses principally
on the use of Designer/2000 as a device for
Entity-Relationship modelling and the
construction of a physical database from that
model.

SDD_ELEMENTS is a massive table with
cryptically-named columns and dozens of self-
referencing foreign keys. It is usually easier to
avoid this (and other) repository tables and make
direct access the repository via the many
repository views which are defined in the
Designer/2000 system. Many of these views are
defined as updateable views on a single table. By
looking at the view text the base tables and
column mapping can be ascertained. (But
NEVER DIRECTLY MODIFY THE
REPOSITORY. This should only be done using
the Designer/2000 API). The on-line
documentation also has column details and other
information on the repository views in the section
entitled Application Repository Programmatic
Interface.

Designer/2000's Repository Object Navigator
(affectionately called "The RON") is the principal
tool for defining these functional elements.
Primary Access Component (PACs) such as
tables or entities and Secondary Access
Component (SACs) such as relationships or
columns are defined with the RON using a
hierarchical list (the Application Window) and a
Property Sheet window for each component type.

For example, CI_COLUMNS is a view on
SDD_ELEMENTS which selects all the columns
of all tables defined in the repository. A SELECT
on this view can return column information with
the WHERE clause restricting the output to a
particular column, a particular table, and a
particular Application System. Some of the
foreign keys defined in this view are
table_reference to CI_TABLE_DEFINITIONS,
sequence_reference to CI_SEQUENCES,
source_attribute_reference to CI_ATTRIBUTES.
The major relationships are found in the five data
diagrams which are shipped with the
Designer/2000 product. The one we are most
interested in for this paper is the Database Design
Model and a portion of this diagram is
reproduced in Figure 1.

Diagramming Tools allow creation of ER
diagrams and data diagrams which are extremely
useful for analysis and programming. Elements
may be created with the diagramming tools as
well as in the RON (this is especially useful for
creating view definitions).
Repository Reports are provided to print
summary information or reconciliation's on the
repository model, but I often found them too
detailed, not detailed enough, or simply not
useful, which Is why I undertook this exercise.

These underlying views and tables are daunting at
first glance, but with a little understanding of the
Repository Database Design Model it is not
difficult to create your own custom views and
SQL statements which may be used to

THE DATABASE DESIGN MODEL -
VIEWS AND TABLES
The Designer/2000 Repository stores it's
information in tables and views called the Meta-
model (the model of the model). These are found
in the repository owner's schema. Normally the
user is expected to use only the views to access
repository data.

• directly create DDL for generating tables,
views, indexes and constraints which are
defined in the Repository

• link to a spreadsheet to provide interactive
tablespace, table and index size analysis For the Database Design Model we need to look

at three tables:
• easily create custom reports (e.g. table-

column usage, index usage, etc.) in text
format or linked to a spreadsheet or word
processor without resorting to the Report
Generator.

SDD_ELEMENTS,
SDD_STRUCTURE_ELEMENTS,
and CDI_TEXT.

SDD_ELEMENTS defines the individual
elements and the many-to-one relationships
between them. • create tools for validating a database against

the repository. SDD_STRUCTURE_ELEMENTS is a many-
to-many resolution table to relate elements, e.g. a
single view has several base tables; a single table
may belong to several views.

Paper 106/Page 3

CI_SEQUENCES
#ID

CI_ATTRIBUTES
#ID

CI_DOMAINS
#ID

CI_ATTRIBUTE_VALUES
#ID

CI_ENTITIES
#ID

CI_TABLES_DEFINITIONS
#Table_Reference
#Entity_Reference

Figure 1. Partial Data Diagram of the Database Design Model

Sequence_Reference

Domain_Reference

Column_Reference

Entity_Reference

CI_COLUMNS
#ID

CI_TABLE_DEFINITIONS
#ID

Table_Reference

Table_ReferenceColumn_Reference

Source_Attribute
_Reference

• create tools for validating data prior to
enabling constraints.2

Figure 1 is a partial copy of the Database Design
Model data diagram which is distributed by
Oracle with the Designer/2000 product. Primary
key fields for each view are given in the diagram
and the principal foreign key relationships are
drawn.(Note that this being a data diagram the
crowfoot on the relationship line always
represents the foreign key (child) end of the
relationship and says nothing about whether it is a
many-to-one or one-to-one relationship).
While this diagram is the basis for a good start, I
have found it useful to extract the view text for
the major views so I know how the view SELECT
works and what the base column references are.
It is sometimes easier and faster to directly access
the base table instead of going through the view.
This has it's risks, where it is unlikely that the
view definitions will change during an upgrade,

there are no guarantees that the base table will
change (although I find it unlikely).

HOW TO USE THE VIEWS – AN
EXAMPLE
When I first joined the project, some preliminary
work had been done on creating a physical
database from the ER model. Not being sure of
what had been done already, one of the first
things I had to do was to was to determine which
attributes were not represented in the physical
database model and which columns were not
represented in the logical database model.
Normally, if tables are created from the logical
model using the Database Design Wizard (DDW)
tool, there is an entity-table mapping and thus
each column is an instance of a relationship (i.e. a
foreign key) or an attribute. Sometimes entities
or tables are subsequently modified by hand and
the table update is neglected. How to reconcile
the differences? The example given in Figure 2 is
part of the answer — a query that finds columns

2 1996, Cross-loading of Legacy Data Using the
Designer/2000 Repository Data Model. Jeffrey M. Stander
ODTUG CASE Day 3 Nov 96 at Oracle OpenWorld, San
Francisco, USA..

Paper 106/Page 4

without any corresponding
attributes or relationships.
It is not as bad as it looks. The
Application System is the
database system under
development; it’s end product is
a schema. (Note that
Application Systems in the RON
can share PACs between them,
and ownership of PACs can be
transferred). Application
Systems have a name and a
version number, which must be
specified as shown in the
example where ERD(2) is name
and version number of the
Application System. Thus
CI_APPLICATION_SYSTEMS
is correlated with the entities
CI_ENTITIES view. The
CI_TABLES_ENTITIES joins tables to entities
and the WHERE clause with its subquery filters
out any column which has a source attribute or is
joined to a relationship.

-- Find columns without a source attribute or relationship reference

SELECT ENT.NAME ENTITY_NAME,
 TAB.NAME TABLE_NAME,
 COL.NAME COLUMN_NAME
FROM CI_APPLICATION_SYSTEMS APP,
 CI_ENTITIES ENT,
 CI_TABLES_ENTITIES MAP,
 CI_RELATION_DEFINITIONS TAB,
 CI_COLUMNS COL
WHERE APP.NAME = 'ERD' -- application system
AND APP.VERSION = 2 -- version number
AND APP.ID = ENT.APPLICATION_SYSTEM_OWNED_BY
AND ENT.ID = MAP.ENTITY_REFERENCEj
AND COL.TABLE_REFERENCE = TAB.ID
AND COL.SOURCE_ATTRIBUTE_REFERENCE IS NULL -- not an attribute
AND NOT EXISTS (SELECT NULL -- not a key component
 FROM CI_KEY_COMPONENTS KEY
 WHERE KEY.COLUMN_REFERENCE = COL.ID)
ORDER BY ENT.NAME, TAB.NAME, COL.NAME
/
Figure 2. Example of Using Repository Views to Look For Missing Links
between the Logical and Physical Models.

THE DES2KUTL.SYS VIEWS
As I worked with Designer/2000 and with the
process of building the physical database I found
I had repeating tasks that became difficult to
perform. For instance, if I had to recreate a table
on the development database it was necessary to
drop the foreign key constraints that referenced
that table as a parent table. Although this could
be done using the USER_CONSTRAINTS table I
wanted to also recreate the constraints afterwards.
By writing two custom views, fk_v and
fk_cols_v, I was able to do this. fk_v (Figure 3)
selects the table name, constraint name, and
foreign table name for all server-implemented
foreign keys. fk_cols_v returns information on

THE DES2KUTL.PKG PACKAGE
As I began to create more SQL statements and
views based on the repository views it became
tiresome to always correlate
CI_APPLICATION_SYSTEMS. I also wanted
to write generic SQL which didn’t hard code in
the ERD(2) application system. So I began
writing what became DES2KUTL.PKG (See
Appendix 1), a package of inline functions which
can be inserted into a SQL statement. For
example, des2kutl.app_id without arguments
returns the ID of the ERD(2) application system
because it is hard-coded into the package. I just
have to change the package definition and all
scripts will refer to a new application system. In
the above example,

-- view to list foreign keys with server-side
-- implementation and create status

prompt fk_v
create or replace force view fk_v
as
SELECT fk.el_id id
 ,substr(tab.el_name,1,30) table_name
 ,substr(fk.el_name,1,30) key_name
 ,fk.el_flag6 mandatory_flag
 ,substr(ft.el_name,1,30) foreign_table_name
FROM sdd_elements tab
 ,sdd_elements fk
 ,sdd_elements ft
WHERE tab.el_elem_owned_by = des2kutl.app_id
AND tab.el_type_of='TAB'
AND fk.el_type_of='OCO'
AND fk.el_occur_type='FOREIGN'
AND tab.el_id = fk.el_within_id
AND fk.el_status = 'Y'
AND fk.el_switches in ('BOTH','SERVER')
AND fk.el_2nd_within_id = ft.el_id
GROUP BY
 fk.el_id,
 substr(tab.el_name,1,30),
 substr(fk.el_name,1,30),
 fk.el_flag6,
 substr(ft.el_name,1,30)
/

Figure 3. Custom View on the Repository Lists
Foreign Keys

WHERE APP.NAME = 'ERD'
AND APP.VERSION = 2
AND APP.ID =
 ENT.APPLICATION_SYSTEM_OWNED_BY

is replaced with

WHERE ENT.APPLICATION_SYSTEM_OWNED_BY
 = DES2KUTL.APP_ID.

Inline functions are a very powerful tool for
simplifying and/or enhancing SQL statements.

Paper 106/Page 5

the columns which are components of the
foreign key and the primary or unique key
columns which they are referencing in the
foreign table. (See Appendix)
These views, similar views for tables, primary
keys, unique keys, and several other custom
views I keep in the file DES2KUTL.SYS and
this is reproduced in APPENDIX 2.

To generate DDL I devised the technique of
creating a view which consists of a set of
SELECT statements joined by UNION ALL
statements. Each SELECT statement returns a
piece of the DDL text and sequencing data to
align the text. UNION ALL is used go avoid
the implicit sort/merge which is performed by
UNION, i.e. it runs faster. As an example, I
will use the cc_txt_v view which generates
DDL to create check constraints from the
repository (Figure 4, below).

A describe on this view shows it consists of
columns TABLE_NAME, KEY_NAME,
TEXT, TYPE and SEQUENCE_NUMBER.
The TEXT column is the DDL text we are
interested in. The TYPE column identifies
each of the UNION-ed SELECT statements
and serves to order the text. The sequence
number is always zero except for the actual text
as selected from the repository table
CDI_TEXT. For example, if we want DDL for
all check constraints on the EMPLOYEE table
we would

SELECT text
FROM CC_TXT_V
WHERE TABLE_NAME =

prompt cc_txt_v

create or replace force view cc_txt_v
as
SELECT substr(ft.name,1,30) table_name,
 substr(fk.name,1,30) key_name,
 'Prompt Creating Check Constraint '
 || fk.name || ' on ' || ft.name text,
 0 type,
 0 sequence_number
FROM ci_check_constraints fk,
 ci_table_definitions ft
WHERE ft.application_system_owned_by = des2kutl.app_id
AND ft.id = fk.table_reference /* Foreign Table */
AND fk.create_status = 'Y'
AND fk.implementation_level in ('BOTH','SERVER')
UNION ALL
SELECT substr(ft.name,1,30) table_name,
 substr(fk.name,1,30) key_name,
 'ALTER TABLE ' || ft.name || ' ADD (' text,
 1 type,
 0 sequence_number
FROM ci_check_constraints fk,
 ci_table_definitions ft
WHERE ft.application_system_owned_by = des2kutl.app_id
AND ft.id = fk.table_reference /* Foreign Table */
AND fk.create_status = 'Y'
AND fk.implementation_level in ('BOTH','SERVER')
UNION ALL
SELECT substr(ft.name,1,30) table_name,
 substr(fk.name,1,30) key_name,
 ' CONSTRAINT ' || fk.name text,
 2 type,
 0 sequence_number
FROM ci_check_constraints fk,
 ci_table_definitions ft
WHERE ft.application_system_owned_by = des2kutl.app_id
AND ft.id = fk.table_reference /* Foreign Table */
AND fk.create_status = 'Y'
AND fk.implementation_level in ('BOTH','SERVER')
UNION ALL
UNION ALL
SELECT substr(ft.name,1,30) table_name,
 substr(fk.name,1,30) key_name,
 ' CHECK (' text,
 3 type,
 0 sequence_number
FROM ci_check_constraints fk,
 ci_table_definitions ft
WHERE ft.application_system_owned_by = des2kutl.app_id
AND ft.id = fk.table_reference /* Foreign Table */
AND fk.create_status = 'Y'
AND fk.implementation_level in ('BOTH','SERVER')
UNION ALL
SELECT substr(ft.name,1,30) table_name,
 substr(fk.name,1,30) key_name,
 ')' || chr(10) || ')' || chr(10)
 || '/' || chr(10) text,
 99 type_number,
 0 sequence_number
FROM ci_check_constraints fk,
 ci_table_definitions ft
WHERE ft.application_system_owned_by = des2kutl.app_id
AND ft.id = fk.table_reference /* Foreign Table */
AND fk.create_status = 'Y'
AND fk.implementation_level in ('BOTH','SERVER')
UNION ALL
SELECT substr(ft.name,1,30) table_name,
 substr(fk.name,1,30) key_name,
 ' ' || txt.txt_text text,
 4 type_number,
 txt.txt_seq sequence_number
FROM ci_check_constraints fk,
 ci_table_definitions ft,
 cdi_text txt
WHERE ft.application_system_owned_by = des2kutl.app_id
AND ft.id = fk.table_reference /* Foreign Table */
AND fk.create_status = 'Y'
AND fk.implementation_level in ('BOTH','SERVER')
AND txt.txt_ref = fk.id
/

Figure 4. View generates check constraint DDL.

 'EMPLOYEE'
ORDER BY KEY_NAME,
 TYPE,
 SEQUENCE_NUMBER;

The output from this statement, spooled to a
file, will create the desired check constraint(s)

TABLE SIZE ANALYSIS
Without going into great detail I will mention
that I did not find table sizing for a physical
database well supported in the Repository
Reports. What I did was to use a number of
views on the repository which were able to
return the table name, tablespace_name,
number of columns, initial and final row
counts, initial, final and maximum column
sizes (maximum and final differ because
maximum assumes all VARCHAR2 fields are
fully utilised) and percent free. Some of this
information (row counts, percent free) was be
entered by the designer during the design
phase, although defaults are taken if not present

Paper 106/Page 6

(e.g. 10 for percent free).

The custom views calculate column overheads
and sizing. The view results are loaded into an
Excel spreadsheet either directly (GLUE or
ODBC) or as a text file, and the spreadsheet then
computes rows/block, number of blocks, and
initial, final and maximum megabytes required.
The first page of a size analysis is reproduced in
Figure 5. Once in the spreadsheet form it is
possible to see the impact of varying parameters
such as block size (global), or percent
free(individual tables). E.g. by setting percent
free to 1 for tables which grew but were not
updated we would save 400MB of space over six
months.

Using standard Excel functions (SUM_IF,
COUNT_IF) it was also possible to generate a
summary table of usage by tablespace.

CONCLUSION

Space and time does not permit me to describe
everything I have done with the views listed in
the appendices. As well, there is the Repository
API which is available for those who wish to
programmatically alter the Repository, to load
storage parameters for instance, and there is the
option of User Extensibility which allows
extending the functionality of the Repository
through creating custom properties which can be
used to control user-defined columns in the
Repository tables and views.

The intention is to describe how one can peer
behind the GUI screen and make the data in the
repository work for you in the way you wish.

SOURCE AVAILABILITY

I will be happy to share the views, packages, and
scripts mentioned in this article. Please contact
the author by email. Also note that this paper
and the sizing spreadsheet is available on the
website of the Tasmanian Oracle Users Group
located at http://lad.med.utas.edu.au/toug.

Paper 106/Page 7

Note: tablespace names were
assigned in the RON as substitution
variables and mapped to tablespaces
at build time

This greyed area is populated by a SELECT from
a view on the repository (see file tabviews.sql)

Initial and 2-year row counts are the
values entered against the table for start
and final row volumes. 6-Month value is
an
interpolation

Initial column size depends on
data type and start volume
percentage as entered in the
tables's property sheet in the RON

Max column size assumes each CHAR field is filled.

Final size depends on data type and end volume percentage
as entered in the tables's property sheet in the RON.

Figure 5. Page from table sizing spreadsheet.

 Paper 106/Page 9

	Accessing the Designer/2000 Repository Tables
	INTRODUCTION
	THE DATABASE DESIGN MODEL - VIEWS AND TABLES
	HOW TO USE THE VIEWS – AN EXAMPLE
	THE DES2KUTL.PKG PACKAGE
	TABLE SIZE ANALYSIS

