
 
Cross-loading of Legacy Data Using the Designer/2000  

Repository Data Model 
 

Jeffrey M. Stander 
ANZUS Technology International 

Presented at ODTUG 1996 Meeting 
 

OBJECTIVES 

To design and implement a methodology for migrating legacy data into the a new database using information 
extracted from the Designer/2000 Repository Data Model to validate data integrity. 

 

ABSTRACT 

When migrating legacy data from an old system into a new Oracle database, difficulties often arise when the old 
data violates referential or table integrity on the new database.   

One way to deal with this problem is to define each integrity constraint with an EXCEPTIONS INTO clause which 
causes Oracle to write information to a special table for each row that violates integrity..  Several problems exist 
with this method, the most critical being the inability to validate constraints defined for client-enforcement and 
secondary failures due to invalidation of a row by another constraint. 

A way around these drawbacks is to use the methodology of cross-loading. This technique consists of loading the 
raw data into unconstrained interim tables that mirror the constrained final tables, validating the data in the interim 
tables, and finally loading all data that passes the integrity checks into final tables.  The SQL scripts that are used to 
validate referential and client-side constraints are automatically generated from the Repository Data Model.  

Jeffrey M. Stander Page 1 © ANZUS Technology International 2004 



 
Cross-loading of Legacy Data Using the Designer/2000  

Repository Data Model 
 

Jeffrey M. Stander 
WillStand Consultants P/L 

 
 

INTRODUCTION 

When migrating legacy data from an old system into a new Oracle database, difficulties often arise when the old 
data violates referential or table integrity on the new database.   

 

EXCEPTIONS TABLE METHOD 

One way to deal with this problem is to define each integrity constraint with an EXCEPTIONS INTO clause which 
causes Oracle to write information to a special table for each row that violates integrity. Data is loaded directly into 
tables (probably using SQL*Loader) with the integrity constraints disabled.  When the constraints are enabled the 
exceptions table is written with information which can be used to delete or extract the offending data, after which 
the constraint enabling should proceed without difficulty.  Several problems exist with this method:  

1. So-called client-side constraints (those not enforced by the database server) are not included in the 
validation 

2. Each constraint must be modified with the EXCEPTIONS INTO clause 

3. The only information available on the constraint failure is the table name, constraint name and rowid of 
the offending row.   

4. There is no way with this method to invalidate the reference for optional constraints while leaving the 
rest of the data in the row intact. 

 

CROSS-LOADING METHOD 

A way around these drawbacks is to use the methodology of cross-loading. This technique consists of loading the 
raw data into unconstrained interim tables that mirror the constrained final tables, validating the data in the interim 
tables, storing failure data in a special violations table, and finally loading all data that passes the integrity checks 
into final tables.  The SQL scripts that are used to validate referential and client-side constraints are automatically 
generated from the Repository Data Model..  The advantages of using this method are: 

• validation scripts can be generated automatically by direct access to the Repository 

• constraint EXCEPTION clauses are not necessary 

• client-side constraints can be enforced 

• rowid references to offending data are not required 

• invalid optional foreign keys can be nullified and the child row kept 

• recursive validation can be done to eliminate secondary referential integrity violations 

• more details on the constraint failures can be kept for post-loading analysis and data cleanup 

Some disadvantages are that additional space is required for the interim  tables and more processing time is 
necessary. 

Jeffrey M. Stander Page 2 © ANZUS Technology International 2004 



GENERAL METHODOLOGY OF CROSS-LOADING 
 

In order to validate data integrity, special cross-loading validation scripts are run against the interim tables prior to 
final loading. The Validation Code Generator used to create these scripts is made up of a combination of SQL plus 
in-line functions and special views on the Repository Data Model.  (See Appendix B.).   It was not necessary to use 
any PL/SQL except for inline functions, which makes for fast execution. 

The general method follows these steps: 

1. Create interim load tables in a separate schema which are identical to the final tables. 

2. Create additional columns in the interim 
tables to flag any violations. R A W

D A T A
(A S C II F IL E S )

IN T E R IM
D A T A  T A B L E S
W IT H  F L A G G E D
B A D  R O W S

R E JE C T E D  R A W
D A T A  ( .b a d  fi le s )

IN T E R IM
D A T A  T A B L E S
W IT H
F L A G G E D  B A D
R O W S

S Q L * L O A D E R

S E C O N D A R Y
V A L ID A T IO N

IN T E R IM
D A T A  T A B L E S

P R IM A R Y
V A L ID A T IO N

IN T E R IM
D A T A  T A B L E S
W IT H  O N L Y
B A D  R O W S

F IN A L
D A T A  T A B L E S

A N Y
M O R E   O F F E N D -

IN G  R O W S ?

Y E S

N O

C R O S S -L O A D  W IT H
C O N S T R A IN T S  D IS A B L E D

E N A B L E  C O N S T R A IN T S

D E L E T E  U N -F L A G G E D  R O W S

 

Figure 1.  Validation and Cross-Loading 

3. Load data into interim tables. 

4. Run the primary constraint validation 
scripts (Note: the order in which the 
scripts are run is important and can save 
time analysing secondary failures). (Note: 
As part of this process, custom SQL 
scripts can be run to validate special 
conditions such as mandatory subtype 
constraints or to perform any required 
custom updates.)  

5. After all primary failures are marked then 
a recursive validation must take place to 
eliminate secondary failures. 

6. Disable or drop all foreign key 
constraints on the final tables.  

7. Delete or truncate all data in the final 
tables. 

8. Load the final tables by selecting all rows 
from the interim tables (excluding the 
additional columns added in step 2) 
which do not have a primary or 
secondary mandatory failure.  All rows 
with primary or secondary optional 
failures will have the offending foreign 
key nullified at this time.  

9. Enable or create the foreign key constraints on the final tables.   

10. Delete all rows from interim tables which have no failures.  This leaves all rows behind which were 
either rejected (mandatory failures) or modified (optional failures).  This offending data must be dealt 
with separately. 

Note that steps 1 to 4 are all that is necessary to support a data cleanup effort.  These steps can be run a number of 
times to identify offending raw data which are candidates for additional cleanup.   

 

Jeffrey M. Stander Page 3 © ANZUS Technology International 2004 



INTERIM TABLES 

Interim tables are created in another schema and are initially identical to the final tables to which the data will be 
loaded.  Each table must then have additional rows added to it which are used to flag a violation and to contain a 
key linking the row to the violation data stored in the special violations table.  No referential or check constraints 
are defined on these tables, but primary and unique key constraints must be enabled and indexes should be 
generated. 

 

SQL*LOADER 

If the Conventional Path is used for SQL*Loader then all server-side primary key, unique key and check constraints 
(i.e. non-referential table constraints) will reject any failures of these constraints.   

If Direct Path loading is used then primary and unique keys must be disabled or dropped.  This is because the 
Direct Path method loads all data, tries to rebuild the unique indexes, and then leaves the indexes in the "DIRECT 
LOAD" state if the data violates uniqueness.  Since Direct Path does not test any check constraints these have to be 
handled by validation scripts in order to separate optional from mandatory primary failures.   

The easiest thing to do is to use Conventional Path loading if at all possible, which means that only client-side 
constraints and all foreign key constraints must be validated after loading. 

 

PRIMARY FAILURES  

The validation scripts will cause an initial modification or rejection of bad data at load time. All failures at this 
stage are called primary failures as they are due to missing or invalid parent keys or failure to satisfy a check 
constraint. 

A primary mandatory failure rejects the entire row when the parent key is missing for a mandatory foreign key 
constraint..  A primary optional failure rejects only the foreign key by nullifying an optional foreign key when the 
parent key is not found. 

Optionality as it applies to cross-loading determines whether the entire row is rejected if a foreign key fails to find a 
parent reference.  Clearly all check constraints are mandatory.  A foreign key is mandatory if it contains NOT 
NULL key components or is flagged as mandatory in the repository.  In the cross-loading exercise, a foreign key 
constraint can also be promoted to mandatory status if one of it's key components is a member of a unique or 
primary key.  The Validation Code Generator uses the function xlutl.unique_constraint_in (see Appendix B) to 
determine if an optional constraint is promoted. 

 

SECONDARY FAILURES 

After all primary failures are detected and flagged in the interim tables a recursive validation must take place to 
eliminate secondary failures.  These occur when a valid parent key exists but the parent row itself has incurred a 
primary failure.  The validation must be recursive because the row being invalidated for a secondary failure may 
contain one or more parent keys referenced by other tables. A secondary mandatory failure rejects the entire row.  
A secondary optional failure rejects the foreign key only. 

The interim tables are modified to contain additional columns (see below).  When a primary or secondary failure is 
detected in a row, that row is tagged using these columns.  One column is a permanent flag which is set when a 
primary or secondary mandatory failure is detected.  Another column is transient, being cleared and reset for each 
constraint being validated.  A third column contains a unique number for each row that fails any constraint.  This is 
the validation number and becomes the link for that row to a special table with the name XL_VIOLATIONS.  There 
is a many-to-one relationship between this table and the interim tables. XL_VIOLATIONS stores the table name, 
constraint name, violation number, type of constraint, type of violation, rowid of the offending row, run number, 
and the date and time of the failure.  (See Appendix A for a table description and definition of constraint and 
violation types) 

Jeffrey M. Stander Page 4 © ANZUS Technology International 2004 



After validation is completed, data loading to the final tables can then proceed with all data conforming to integrity 
constraints. The offending data left behind will have the failure reason at hand to allow for cleaning, reloading or 
rejection. 

 

SELECTING CONSTRAINTS FOR VALIDATION — EXTENDING THE REPOSITORY 

Normally the Validation Code Generator is set to select all constraints for the selected tables which have their 
CREATE STATUS property set in the RON (Repository Object Navigator).  The user extensibility option allows 
creation of a new constraint property: VALIDATE IN CROSS-LOAD.  This can be used to signal the Validation 
Code Generator directly that a constraint must be included in the cross-load validation.  I am not clear if 
Designer/2000 upgrades will carry the user extensibility forward.   

A less elegant but simpler method is to keep a list of all tables with the constraints to be checked in a special table 
created for that purpose.  I experimented with the former method but chose the latter because of reasons having to 
do with repository access.  A custom package of inline functions was used (Appendix B) to access the table with 
the list of constraints for validation. 

 

SUBTYPE FOREIGN KEY CONSTRAINT AND VALIDATION 

On our particular project subtypes were defined as updatable views on a supertype base table.  These become 
candidates for validation when they have foreign key constraints which are mandatory on the view but optional on 
the base table.  Naturally, these are marked as client-side enforced constraints.   

Since the Repository Data Model does not handle subtypes well, particularly when instantiated as views, this 
situation requires special handling.  Automatic generation of validation scripts is difficult for this situation.  Three 
solutions present themselves:   

1. Modify a copy of the subtype view to allow updating of the base table special validation columns and 
allow the Validation Code Generator to create code from the foreign key constraints defined in the 
view.. 

2. Modify by hand the SQL generated by the Validation Code Generator for the base table to include the 
subtype discriminator and to then check for a mandatory foreign key constraint.  Two scripts need to be 
created: one to detect primary failures and another to detect secondary failures.   

3. Modify the repository (using user extensibility or perhaps special text in the COMMENTS field) and 
extend the Validation Code Generator to recognise subtypes and create the appropriate code. 

The third option is best but difficult to write.  The first option is the most practical and is what I chose to use. 

 

 

Jeffrey M. Stander Page 5 © ANZUS Technology International 2004 



SPECIFIC METHODOLOGY 

 

CUSTOM REPOSITORY VIEWS AND THE VALIDATION CODE GENERATOR  

In order to extract information from the Repository Data Model a number of custom views have been written.  
These are described in more detail in the author's paper Accessing the Designer/2000 Repository Tables. Each view 
returns information from the Repository Data Model only for the application system which we are validating.. 

TAB_V —  Return id number, table names and aliases (short names) 

PK_V —  Get primary key name and columns for a table 

UK_V —  Get unique key name and columns for a table 

FK_ALL_V —  Return information on foreign keys 

FK_COLS_V —  Return information on foreign keys and key components 

CC_ALL_V —  Return text for check constraints on tables 

The Validation Code Generator depends on these views to create SQL statements for primary and secondary 
validation.  It is too lengthy to append to this paper and is available from the author.  In brief it functions as follows, 
writing its output to a file which serves as the master controller for primary and secondary validation. 

1. Read a validation parameter file to determine interim and final schema names and other parameters.  
(Example in Appendix D)   

2. Find the check constraints and foreign key constraints which are designated for validation.   

3. Writing to a work table, denormalize the key component references onto a single row.   

4. Truncate the XL_VIOLATIONS table. 

5. Using a view (Appendix E) which reads from the work table, write the SQL statements for primary 
validation. 

6. Write calls to programs that will dynamically generate the SQL for secondary validation.  This will be 
similar to step 5.   

7. Select from DML generating views to create the scripts to disable and enable constraints in the final 
table schema and, most importantly, to transfer the data from the interim schema to the final schema 
(see Appendix F) 

 

INTERIM TABLES 

The first step is to modify the interim tables to add three new columns.  

XL_VIOLATION —  Temporary flag marks a row modified or rejected on current pass 

XL_VIOLATION_FLAG —  Permanent flag indicates row is not to be loaded to final tables 
XL_VIOLATION_NUMBER    —  Permanent sequence number assigned to a row on failure 

This is done for all interim tables by the xload_mod.sql script listed in Appendix C.  Each time a complete 
validation is run, all of these fields must be set to NULL. 

 

Jeffrey M. Stander Page 6 © ANZUS Technology International 2004 



PRIMARY FAILURES 

Three script components are generated for each check constraint or foreign key constraint.   

1. UPDATE the target table, set XL_VIOLATION='T", XL_VIOLATION_NUMBER to the next 
sequence number (if not already set), and XL_VIOLATION_FLAG='T' only if this is a check 
constraint or mandatory foreign key constraint (i.e. not an optional foreign key constraint).. 

2. For each occurrence of a non-null value of XL_VIOLATION, INSERT into the XL_VIOLATIONS 
table the table name, constraint name, the violation number, the type of constraint, the type of 
violation, the rowid of the offending row, the run number, and the date and time.  Primary failures are 
marked 'PO' or 'PM' (primary optional or primary mandatory) in the XL_VIOLATIONS table. 

3. UPDATE the target table and nullify any values of XL_VIOLATION.  (NOTE: This is a transient flag.  
It is used over again for every foreign key constraint or check constraint on a given table.  
XL_VIOLATION_FLAG is permanent for an entire validation run, as is XL_VIOLATION_NUMBER 
which allows a many-to-one reference from the XL_VIOLATIONS table to the offending row). 

For example, to validate the optional foreign key constraint  PROD_EMP_FK, which links the PRODUCT table to 
the EMPLOYEE table, the Validation Code Generator produced the code listed in Figure 2 below. 

 

SECONDARY FAILURES 

Secondary failures occur when a valid parent key belongs to a row which is itself rejected for a primary or 
secondary failure.  Secondary failures can only be checked for after all primary failures have been registered in the 
interim tables (or at least all tables with referential dependencies).  Because secondary failures can themselves 
result in additional secondary failures, secondary failure testing must be run recursively.  To  minimise the 
recursion: 

1. Restrict testing only to foreign key constraints (check constraint do not apply) 
 
2. Do all self-referencing  foreign key constraints on a given table in one pass.  Use a tree walk if possible.  (In 

practice this may not be necessary.  It wasn't on our project). 
 
3. Restrict validation only to tables dependent on tables with invalidations that have occurred since the time of the 

last validation.  This can be done by re-running the Validation Code Generator only for those tables that meet the 
following condition or by including the condition in the generated secondary validation script.  The run_number 
field in the XL_VIOLATIONS table starts at 1 for every complete validation.  It is incremented by one after each 
secondary validation.  Thus, to find which tables need secondary validation: 

SELECT distinct table_name  
FROM   XL_VIOLATIONS  
WHERE  run_number = MAX(run_number); 

Recursive validation terminates when no more violations are found, i.e. when  
SELECT count(*) 
FROM   XL_VIOLATIONS;  

returns the same number before and after the secondary failure validation.  A Unix shell script is used to re-run the 
validation until the above condition is met. 

Jeffrey M. Stander Page 7 © ANZUS Technology International 2004 



PROMPT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
PROMPT Checking PRODUCT for primary failures 
 
PROMPT Validating foreign key PROD_EMP_FK on table PRODUCT 
PROMPT Implementation Level = CLIENT 
PROMPT Mandatory Flag       = N 
 
set timing on 
SET TRANSACTION USE ROLLBACK SEGMENT RMASSIVE; 
 
UPDATE xload.PRODUCT a 
SET    XL_VIOLATION = 'T', 
       XL_FLAG = 'T', 
       XL_VIOLATION_NUMBER =              
             DECODE(XL_VIOLATION_NUMBER,NULL,XL_VIOLATION_SEQ.NEXTVAL,XL_VIOLATION_NUMBER) 
WHERE  a.EMP_PARTY_ID IS NOT NULL  -- If this constraint were MANDATORY, this line would be missing 
AND NOT EXISTS 
      (SELECT 1 
       FROM   xload.EMPLOYEE b 
       WHERE  a.EMP_PARTY_ID = b.PARTY_ID 
      ) 
/ 
 
set feedback off 
set timing off 
COMMIT; 
set feedback on 
 
PROMPT Inserting failure data into XL_VIOLATIONS table 
 
set timing on 
INSERT INTO XL_VIOLATIONS 
SELECT 'PRODUCT', 
       'EMP_PARTY_ID', 
       'PROD_EMP_FK', 
       'R', 
       1, 
       'PO', 
       XL_VIOLATION_NUMBER, 
       1, 
       ROWID, 
       'CLIENT', 
       SYSDATE 
FROM   xload.PRODUCT 
       WHERE XL_VIOLATION IS NOT NULL 
/ 
 
set timing off 
set feedback off 
COMMIT; 
set timing on 
 
UPDATE xload.PRODUCT 
SET    XL_VIOLATION = null 
WHERE  XL_VIOLATION is not null 
/ 
 
set timing off 
COMMIT 

Figure 2.  Example of Primary Optional Validation SQL statements.  Note the only difference between a this 
and a Mandatory Validation is the WHERE..IS NOT NULL statement would be missing and the ‘PO’ value 
would be ‘PM’.  

 

Jeffrey M. Stander Page 8 © ANZUS Technology International 2004 



 

Three scripts are generated for each foreign key constraint:.  Self-referencing foreign key constraints will have a 
different version of script 2. 

1. For each row, check that there does not exist a parent key reference which itself has a violation 
recorded against it (b.XL_VIOLATION_NUMBER IS NOT NULL).  If there is a violation, 
determine if the parent row will be deleted.  In Figure 3 below, note the use of the inline function 
xl_chop  to validate this. 

2. Next, determine if this violation is already registered in the table.  If not, go ahead and UPDATE the 
target table as with a primary constraint. — set XL_VIOLATION_NUMBER to the next sequence 
number (if not already set), and set XL_VIOLATION_FLAG='T' only if this is a mandatory foreign 
key constraint (i.e. not an optional foreign key constraint). See Figure 3 below. 

3. INSERT into the XL_VIOLATIONS in the same way as for a primary constraint.  Secondary failures 
are marked 'SO' or 'SM' (secondary optional or secondary mandatory). 

4. UPDATE the target table and nullify any values of XL_VIOLATION. 

 

 
UPDATE xload.PRODUCT a 
SET    XL_VIOLATION = 'T', 
       XL_FLAG = 'T', 
       XL_VIOLATION_NUMBER =              
             DECODE(XL_VIOLATION_NUMBER,NULL,XL_VIOLATION_SEQ.NEXTVAL,XL_VIOLATION_NUMBER) 
WHERE a.EMP_PARTY_ID IS NOT NULL -- If this constraint were MANDATORY, this line would be missing 
AND EXISTS 
      (SELECT 1 
       FROM   xload.EMPLOYEE b 
       WHERE  a.EMP_PARTY_ID = b.PARTY_ID 
       AND    b.XL_VIOLATION_NUMBER IS NOT NULL 
       AND    (b.XL_FLAG='T' OR xlutl.xl_chop(b.XL_VIOLATION_NUMBER)=1) 
      ) 
      AND ( a.XL_VIOLATION_NUMBER IS NULL 
      OR NOT EXISTS  
      (SELECT 1 from XL_VIOLATIONS x  
       WHERE  x.VIOLATION_NUMBER = a.XL_VIOLATION_NUMBER 
       AND    'EMP_PARTY_FK' = x.CONSTRAINT_NAME 
       AND    x.column_seq = 1 
             ) 
      ) 
/ 

Figure 3.  Example of a Secondary Optional Validation SQL statement (partial). 

 

CROSS-LOADING 

Cross-loading proceeds by inserting into each table in the target schema with a select from the interim schema.  The 
only conditions are that where an optional secondary failure is found (XL_FLAG is null and 
XL_VIOLATION_NUMBER is not null), then we need to look up the specific violation for the table, column, and 
row in question to see if that particular field was invalidated. This is done by an inline function xl_chop 
(violation_number,column_name).  If xl_chop returns a value of 1, the field is set to null. (See example in Figure 4) 
 
 

Jeffrey M. Stander Page 9 © ANZUS Technology International 2004 



Figure 4.  Example of a SQL statement to cross-load a table.  If PARTY_ID has a validation failure lodged 
against it, it is set to null. 

TRUNCATE TABLE final.PRODUCT; 
SET TRANSACTION USE ROLLBACK SEGMENT RMASSIVE; 
INSERT INTO final.FEE_THRESHOLD 
( 
         id, 
        ,party_id 
        ,area_id 
        ,owner_id 
        ,name 
) 
SELECT 
         ID, 
        ,decode(xl_violation_number,null,PARTY_ID, 
           decode(xload.xlutl.xl_chop(xl_violation_number,'PARTY_ID'),1,null,PARTY_ID)) PARTY_ID 
        ,AREA_ID 
        ,OWNER_ID 
        ,NAME 
FROM    xload.PRODUCT 
WHERE   xl_flag is null 
/ 
 
COMMIT; 

 
 
To speed up the cross-loading process indexes on the target tables can be dropped and recreated after loading.  At 
that time the constraints can be enabled or created as the case may be and there you have it — a fully loaded 
database with all referential integrity in place and ready to go. 
 
 
APPENDICES 
 
The full text of this paper including the appendices containing the SQL code are available from the author: 
 
Jeffrey M. Stander 
ANZUS Technology International 
www.anzustech.com 

 

Jeffrey M. Stander Page 10 © ANZUS Technology International 2004 


	Cross-loading of Legacy Data Using the Designer/2000
	Repository Data Model
	Cross-loading of Legacy Data Using the Designer/2000
	Repository Data Model

