
 
Oracle Database Standards You Can Use Now 

 
by 
 

Jeffrey M. Stander 
 

ANZUS Technology International 
2401 N Northlake Way 

Seattle, WA 98103 USA 
1-800-945-7375 

jstander@anzus-technology.com 

\ 
Presented at IOUGA 1999 

Prerequisite 
For everybody.  Attendees should have some knowledge of SQL and PL/SQL. 

Objectives 

To (1) provide you with a basic understanding of WHY a standards and practices document is a 
useful (nay, essential) part of the development toolkit; and (2) present a set of basic programming 
and design standards for Oracle which will get you started. 

Abstract 

Standards for the creation and maintenance of relational databases are as much a part of the 
infrastructure for software development as the computers and the database itself.  Good standards 
do not constrain the creativity of designers and developers, but rather encourage the development 
of best practices.  Also, as the name implies, an enterprise now has common practices, which all 
members of the IT team can easily understand and relate to.   

 
Among Oracle professionals many of the practices presented here are de facto standards in 
common use in the industry, having evolved because of their obvious utility, but in many 
companies there is no Standards document and programmers and designers often leave 
incomprehensible code and data structures for those who follow.   It pays to have standards and to 
follow them. 
 

This paper will present an introduction to relational database naming standards, program objects 
naming standards, coding standards, file naming standards, and a discussion of standards as they 
apply to application design using Designer/2000.  

© Jeffrey M. Stander 2004 Page 1 ANZUS Technology Inc.  

mailto:jstander@anzus-technology.com


Oracle Database Standards You Can Use Now 

TABLE OF CONTENTS 
PREREQUISITE ..............................................................................................................................................1 
OBJECTIVES..................................................................................................................................................1 
ABSTRACT....................................................................................................................................................1 

1. INTRODUCTION .................................................................................................................................4 

1.1. WHY BOTHER WITH STANDARDS?...................................................................................................4 
1.2. HOW FAR SHOULD A COMPANY GO? ...............................................................................................4 

2. NAMING STANDARDS.......................................................................................................................6 

2.1. GENERAL NAMING CONVENTIONS FOR ORACLE DATABASES ..........................................................6 
2.2. DESIGNER/2000 NAMING STANDARDS.............................................................................................6 

2.2.1. Designer/2000 Application Systems ........................................................................................6 
2.2.2. Entities.....................................................................................................................................7 
2.2.3. Entity Short Names ..................................................................................................................7 
2.2.4. Attributes and Domains ...........................................................................................................8 
2.2.5. Business Functions ..................................................................................................................8 
2.2.6. Module Names .........................................................................................................................8 

2.3. PROGRAM OBJECTS NAMING STANDARDS .......................................................................................9 
2.3.1. Program names........................................................................................................................9 
2.3.2. Oracle*Forms Objects Names.................................................................................................9 
2.3.3. Oracle*Reports Object Names ..............................................................................................10 

2.4. DBA NAMING STANDARDS............................................................................................................10 
2.4.1. Database Name......................................................................................................................10 
2.4.2. Database Control Files..........................................................................................................10 
2.4.3. Redo Log File ........................................................................................................................11 
2.4.4. Tablespace.............................................................................................................................11 
2.4.5. Database File ........................................................................................................................11 
2.4.6. Rollback Segments.................................................................................................................11 
2.4.7. Database Control Files..........................................................................................................11 

2.5. DATABASE OBJECTS NAMING STANDARDS....................................................................................12 
2.5.1. Tables ....................................................................................................................................12 
2.5.2. Table Short Names.................................................................................................................13 
2.5.3. Column Names.......................................................................................................................13 
2.5.4. Column Order In Table .........................................................................................................15 

2.6. CONSTRAINTS.................................................................................................................................15 
2.6.1. Primary Key Constraints .......................................................................................................15 
2.6.2. Unique Key constraints..........................................................................................................16 
2.6.3. Foreign Key Constraints........................................................................................................16 
2.6.4. Check Constraints..................................................................................................................16 

2.7. INDEXES .........................................................................................................................................16 
2.8. VIEWS ............................................................................................................................................17 
2.9. TEMPORARY AND WORKING TABLES .............................................................................................17 
2.10. SYNONYM NAMING AND USE .....................................................................................................18 

2.10.1. Public Synonyms....................................................................................................................18 
2.10.2. Private Synonyms ..................................................................................................................18 
2.10.3. Naming Conflicts ...................................................................................................................18 

2.11. SEQUENCES ................................................................................................................................18 

    
© ANZUS Technology International, 1999  Paper #448 Page 2 

 



Oracle Database Standards You Can Use Now 

2.12. DATABASE TRIGGERS.................................................................................................................18 
2.13. PL/SQL PACKAGES....................................................................................................................18 
2.14. DOMAINS VS CODES ...................................................................................................................19 

2.14.1. Guidelines for Defining Domains ..........................................................................................19 
2.14.2. Guidelines for Generating Domains......................................................................................19 

2.15. CODING STANDARDS (SQL AND PL/SQL) .................................................................................19 

3. PROGRAMMING STANDARDS .....................................................................................................20 

3.1. CODING PRINCIPLES .......................................................................................................................20 
3.2. CODING STANDARDS......................................................................................................................20 

4. DESIGN STANDARDS ......................................................................................................................21 

5. FILE NAMING....................................................................................................................................22 

5.1. FILE EXTENSIONS...........................................................................................................................22 

APPENDIX A. SOME ABBREVIATIONS AND ACRONYMS ...........................................................23 

APPENDIX B. CODE TABLES...............................................................................................................24 

 
 

    
© ANZUS Technology International, 1999  Paper #448 Page 3 

 



Oracle Database Standards You Can Use Now 

1. Introduction  

1.1. Why Bother With Standards? 

This is not a trivial question.  Most IT sites I have worked at have no official standards and those 
that do exist are the personal working methods of whomever previously worked on their database 
systems.  

Commonly database design evolves over time in response to pressing and immediate needs 
without careful planning or guidance.  In a typical enterprise, different computer platforms and 
operating systems support applications that use disparate data models and database management 
systems.  To further complicate matters, third party applications as well as in-house development 
have created incompatible data structures. Both syntactic differences (the same data is defined 
differently or represented in a different format) and semantic differences (different meanings for 
the same term) have created conflict between systems.  1 

Over the years certain “correct” methods have developed in the community as a whole, but these 
are often ignored by self-taught Oracle developers or those who have only recently come to use 
Oracle.  I will try to present what I perceive as these de facto standards, as well as others learned 
on job sites and from professional colleagues. The standards presented are gathered from my 
professional experience, professional colleagues, code study, reading, and generally available 
information on the web and elsewhere.  I have attempted to synthesize and select good practices. 
Keep in mind that what is presented here is only my opinion and you are quite welcome to 
disagree with it. Having a set of your own standards is more important than proving mine wrong. 2   

Standards for the creation and maintenance of relational databases should be as much a part of the 
infrastructure for software development as the computers and the database itself.  Good standards 
do not constrain the creativity of designers and developers, but rather encourage the development 
of best practices.  Also, as the name implies, an enterprise now has common and consistent 
practices that all members of the IT team can easily understand.  If (even more rare) a standards 
document exists, then all contractors and new hires have a reference for how to interpret existing 
code and database objects.  Even if the enterprise’s standards are different from an individual’s 
common practice, it still creates the consistent common environment.  This can save hours of time 
and confusion and sometimes avoid costly mistakes.   

Maintenance especially becomes much easier. As a small example, if a view name always ends in 
_V (e.g. EMP_V).  Any developer will now know this is a view (with its inherent restrictions on 
updates and query optimizations) and will not assume it is a table.   

1.2. How Far Should a Company Go? 

I would say that many smaller companies (and some larger ones) have no standards at all.  They 
might have a common practice for their site, which is enforced only by custom.  As a consultant I 
can try to introduce standards, or just do the best job I can with what is there.  

                                                           
1 Throughout this paper, data means information stored in a database, in purchased applications, or collected and stored 
by end users (engineering staff, for example). The term database object refers to anything created in the database, 
except the data itself (tables, indexes, triggers, procedures, for example). 
2 However, if you have a serious objection to a standard as I’ve proposed it, and a reason to back it up, please send me 
an email.  As I proceed with this project I would be delighted to hear from other  practitioners on their methods. 

    
© ANZUS Technology International, 1999  Paper #448 Page 4 

 

 



Oracle Database Standards You Can Use Now 

One can go too far with standards.  Beware of this.  They can become an impediment if taken to 
the extreme.  I once chose to move on to a new job rather than use the pathologically convoluted 
standards adopted by a particular workgroup.   

Standards are especially agonizing if they are 

• Too far off the mainstream (i.e. not common practice). 

• Too complex. 

• Ignored by everyone but you. 

• Used by everyone but you. 

• Not applied consistently within the organization or (worse) within an application. 

• Not supported by management. 

• Not enforced. 

Somewhere between standards that are way too complex and no standards at all is the Standards 
Middle Path for your company.  This means you will have 

• Industry-accepted standards (or close to industry-accepted standards) 

• A company document which describes these standards 

The scope of the standards will also vary.  As a minimum, naming standards for database objects 
(entities, tables, columns, constraints, indexes, sequences, etc. etc.) will go a long way towards 
making it easier to use and modify your database.  Beyond that, standards can be written or 
adopted for program design and coding (including SQL, PL/SQL, HTML, Java, etc.), GUI design, 
Database and System administration (e.g. SID names, control file names, database file names, 
etc.), other file naming conventions and enterprise modeling rules. 

Once adopted, standards must be enforced.  There must be a code review, design walkthrough, or 
architecture committee that will make sure the rules are followed. 

No matter how different a standard may seem, if it is close to de facto industry standard practice 
and/or adopted for a rational reason, you can get used to it.   That standard will soon become 
second nature to use.  A good example of this is the entity short name and the table short name, 
which we will review later. 

This document is organized along standards types, rather than functional areas.  We will cover the 
following: 

• Naming standards (in detail) 

• Design Standards (overview) 

• Programming Standards (overview) 

The limited time and paper length limitation at IOUG-LIVE precludes covering more than a 
fraction of this subject.  A more extensive version of this paper can be found on the web site at 
http://anzus-technology.com.    

 

    
© ANZUS Technology International, 1999  Paper #448 Page 5 

 

http://anzus-technology.com/


Oracle Database Standards You Can Use Now 

2. Naming Standards 
 

The following naming standards are for use in developing ORACLE-based applications.  These 
conventions should be used whenever possible in naming application objects.   

Many of the naming standards specified below were chosen with Designer/2000 design and 
development work in mind.  However, these standards can and should be applied to all Oracle-
based application development work unless overriding arguments to the contrary can be provided.   

 

2.1. General Naming Conventions for Oracle Databases 

Conform to Oracle naming rules: 

1. Begin all names with a letter. 

2. Only the characters A-Z, 0-9 and _ (underscore) may be used  (the use of $ and # are not 
allowed) 

3. Do not use Oracle reserved words as names, e.g. DATE, COUNT, SUM, MAX or DESC. 

4. A name should not be the name of another Oracle object of the same type. 

5. Names should be as short as possible while remaining meaningful. 

6. Use underscores as delimiters (except for entity names, where white space is used). 

7. Avoid prepositions where possible (e.g. use VESSEL_LENGTH rather than LENGTH_OF_ 
VESSEL). 

8. Develop and use a general abbreviation standard (see Appendix A, Page 23). Each application 
system may require additional abbreviations to be added to the standard set. 

9. Avoid meaningless or redundant names (e.g. DATA_TABLE for a table name, 
ROW_CREATE_DATE for a column name). 

2.2. Designer/2000 Naming Standards 

2.2.1. Designer/2000 Application Systems 

An application system is a collection of database elements and associations within the 
Designer/2000 repository.  An application system typically corresponds to a database application 
that you are designing and building.   

All Application Systems should have a name or mnemonic of up to 8 characters that is unique 
within the organization.    In practice it is preferable to use a 2- or 3- character mnemonic for ease 
of reference and for use as an object prefix.  For example: 

ODW Operational Data Warehouse 
HRS Human Resource System 
CRS Customer Response System 
COR Corporate Data System.  
REF Reference Data and Standard Objects.  

 

Applications based on the database schemas should have the same name as the schema name. 

    
© ANZUS Technology International, 1999  Paper #448 Page 6 

 



Oracle Database Standards You Can Use Now 

2.2.2. Entities 

Entities should be named in upper case, in the singular, using white space (not underscores as 
delimiters) and should usually be no more than three words.  For example: 

 PERSON (not PEOPLE) 
 WAFER 
 MFG SPECIFICATION 
 PARTY 
 WORK ORDER 

2.2.3. Entity Short Names 

Every entity within an application will be given an entity short name or alias, consisting of a 4-
character mnemonic, which is unique within the application.  This will generally produce 
meaningful and unique names although a little variation may be appropriate.  The table short name 
is the given the same name as the entity short name.   

The general rule for deriving short names is: 

1. If the entity name is one word, use the first four letters of the word 
2. If the entity name contains two words, use the first two letters of each word 
3. If the entity name contains three words, use the first letter of the first two words, plus 

first two letters of the third word 
4. If the entity name contains four words, use the first letter of each word.   

 

In the event of duplicate short names, a similar combination of letters should be used.   Examples 
of entity short names are listed below: 

 
ENTITY NAME SHORT NAME 
PROCESS PROC 
PROCESS REGISTER PRRE 
PROCESS PARM REGISTER PPRE 
PROCESS PARM REGISTER TYPE PPRT 

 

Occasionally exceptions will crop up.  My favorite is the PARTY entity, which would abbreviate 
to PART, which is both misleading and possibly a duplicate name in a manufacturing or supply 
database.  Therefor PRTY could be used, but I usually just call it PARTY, since the short name is 
hardly longer than the full name.  I would accept another rule that if the long name is 5 characters 
make the short name equal to the long name.  Occasionally collisions occur and then you just have 
to pick another alias. 

Before you gag and reject this, please read on.  I hated this when my friend (and Oracle 
Consultant) Margaret first proposed it to me.  Why should a perfectly good name like 
MARKETING ANALYSIS, for instance, be given an alias of MAAN.  Surely MKTA or MKAN 
or even MKT_ANAL would be better?  But Margaret wouldn’t hear of it.  Always follow the 
rules, she said, you would get used to it and eventually swear by it.  She was right.  First, it is easy 
to create table or entity short names because there is a rule for doing it. MKT isn’t marketing to 
everybody, they might pick MRK or MKTNG Secondly, because the rule is consistent, it is always 
easy to determine which table or entity is being referenced.  Third, everybody else is doing exactly 
the same thing (YES!).  You can live with MAAN and other strange sounding aliases and 
eventually you will like it.  Trust me. 

    
© ANZUS Technology International, 1999  Paper #448 Page 7 

 



Oracle Database Standards You Can Use Now 

2.2.4. Attributes and Domains 

Attributes and domains should be named as descriptively as possible.  They should be in the 
singular, in upper case, using white space (not underscores) as delimiters, and should usually be no 
more than three words. 

In Designer/2000, utilizing domains can optimize the creation of attributes.  Domains define a set 
of properties that apply to attributes.  This property set usually consists of data structure 
definitions, but may be extended to include validation rules and format constraints.  Before 
creating attributes during the Analysis stage, domains should already be defined such that when 
the attribute is entered, the appropriate domain definition can be associated to it.  This way, the 
attribute can inherit the properties of the domain, and in the event of property changes, utilities are 
available to propagate those changes.  Using domains appropriately can save a great deal of work 
on the part of the designer.3 

2.2.5. Business Functions 

Business function statements should always describe what is done rather than why it is carried out. 

A function statement should always start with one to three active verbs carried out on an object.  
The name describes one activity, so the object of the verb is usually singular, e.g. Calculate Month 
To Date Yield. 

The function statement should describe only one function.  Avoid the use of AND, or the delimiter 
";".  Each function, if decomposed, must have at least two subordinate functions.  The value and 
scope of a function must be equal to all of its subordinate functions.  The functions should be 
referenced by a unique base 15 alphanumeric character string. 

2.2.6. Module Names 

Module names should be limited to a string of 8 alphanumeric characters.  This allows for the 8- 
character file name limit imposed by MS-DOS and WIN3.1 (Curse you Bill Gates). This rule can 
be relaxed if only Windows NT or Windows 95/98 is the standard for client applications. 

The module name should be in lower case, to enable it to be moved consistently between 
operating systems. 

Module names should be of the form aannnnpp where: 

aa Sub-System Prefix 
nnnn Unique program reference (could be based on a business function reference to 

convey some limited meaning and position to the program within the whole 
application or a number) 

pp Program Type Code  
 sc screen or Form 
 rp Report 
 p SQL 
 l PL/SQL? 
 c C 
 j Java 
 o Operating system script 

                                                           

    
© ANZUS Technology International, 1999  Paper #448 Page 8 

 

3 Hervé Deschamps has a method of creating default domains in a Designer/2000 repository.  For this and other 
standards enforcement techniques see his web site: http://home.sprynet.com/~hdeschamps/homepage.htm.  

http://home.sprynet.com/~hdeschamps/homepage.htm


Oracle Database Standards You Can Use Now 

2.3. Program Objects Naming Standards 

Program objects include 

• PL/SQL Variables 
• Oracle*Forms Objects 
• Oracle*Reports Objects 
• Variables in other languages 

2.3.1. Program names 

Program names will usually be implementations of Modules that have been defined in the 
Designer/2000 repository; therefore their names will conform to the conventions laid down for 
Module names. 

2.3.2. Oracle*Forms Objects Names 

2.3.2.1 Blocks 

Blocks will be named differently according to their usage.  In cases where more than one block is 
required that would have the same name under the following standards, then all such blocks will 
be given a numeric suffix, beginning with 1, to uniquely identify each block. 

Base Table Standard Base table blocks will use the table or view short name as the block 
name. 

Control  A control block is usually required for most forms, to allow entry of options and 
store local control values.   When present, this block will be named CONTROL. 

Non-Database Non Database Block are typically required for some specific action or purpose, 
e.g. to enter search criteria or display additional information.  These blocks will 
be named for their action, and if they operate on only one object, then 
action_object, e.g. SEARCH_ADDRESS, would be the block in which address 
search criteria is entered. 

Special    There are a number of special purpose blocks that are available from the 
Standard Objects Form that must not be duplicated in any Form.  These are 
TOOLBAR, CALENDAR, FOLDER_TOOLS and FOLDER_CONTROL. 

2.3.2.2 Items 

Since items that are mapped directly to database columns must be named the same as the column, 
it is logical to apply the same naming conventions to items as is applied to columns.  The 
exception to this rule is mirror items, which will be named the same as their database equivalents 
with a '_MIR' suffix. 

    
© ANZUS Technology International, 1999  Paper #448 Page 9 

 



Oracle Database Standards You Can Use Now 

2.3.2.3 Record Groups and LOV's 

Record groups and LOV's will be named for the object that they represent, or if they contain only 
a subset of the object the name will include a brief description of the criteria, in the form 
object_criteria.  CUSTOMERS (all customers), CUSTOMERS_ACTIVE (all customers that are 
active). 

2.3.2.4 Windows and Canvasses 

Windows and/or Canvasses are purely graphical objects that are used to control and present 
information, their names therefore should identify, as clearly as possible, the information they are 
to present, e.g. CUSTOMER_SEARCH or CUSTOMER_DETAILS. 

2.3.3. Oracle*Reports Object Names 

Not included at this time. 

2.4. DBA Naming Standards 

DBA patterns of naming vary widely.  The ojbects in question include: 

• ControlFile  
• Database 
• Database Link  
• Role 
• Profile  
• Rollback Segment 
• Snapshot  
• Snapshot Log  
• Etc. 

2.4.1. Database Name 

A database name (SID) ideally should be only 3 characters in length, e.g. DEV, PRD, TST.  With 
many databases longer names may be necessary, but names like "JONESCO.PROD1" could easily 
be P1 with no loss of meaning.  The basic rule is that SIDs should be short, concise, and easily 
recognizable.  You should avoid embedding host names with the database, e.g. 
(MYCOMPUTER.PROD1).  If you have lots of instances try devising a naming scheme, e.g. 

 [Plant][Use][Env] 

where Plant refers to the plant or department, Use might be w for warehouse, o for operational 
data, and Env d, t, or p for (you guessed it) development, test and production.   Thus the M3B 
plant might have m3bwd as the SID for its warehouse development environment. 

2.4.2. Database Control Files 

Use controlnn.ctl where nn is a two-digit integer starting at 01 to uniquely identify the copy of the 
control file.  A minimum of 2 control files are created for each database.  Control files will be 
stored in a directory of the form /uxx/oradata/<sid> where xx is another two-digit integer. 

    
© ANZUS Technology International, 1999  Paper #448 Page 10 

 



Oracle Database Standards You Can Use Now 

2.4.3. Redo Log File 

On-line Redo logs will be named redonn.log where nn is a two digit integer to uniquely identify 
the redo log group.  Only one redo log file will exist per redo log group:  On production systems, 
the disks are already mirrored, and on development systems, redo log mirroring is not justified. 
Redo logs will be stored in a directory of the form /uxx/oradata/<sid> where xx is two-digit 
integer., and <sid> is the database system id. 

Archive logs will have the archive log format specifier “%s.log” (see admin guide) and the archive 
destination specifier “/uxx/oraarch/<sid>/arch”, where sid is the database system id.  Archive log 
mode will be used for all databases that require backing up.  No databases will be brought down 
on a scheduled basis for backups.  A nightly export system will exist (and is currently in place, see 
MSA DBA Operations Guide) and will be used for databases where that type of backup is deemed 
appropriate by the DBA. 

2.4.4. Tablespace 

Use the format <purpose> or <purpose>nn where nn is an optional two-digit integer starting at 01. 
Examples of tablespace names are SYSTEM, RBS01, USER, CASE01.   A tablespace is usually 
designated for indexes, e.g. USERX, or  CASE_X.  The standard set of tablespaces is USER and 
SYSTEM.  Try not to use these for specific applications.  Set up application-specific tablespaces 
which have the application acronym as the part of the name, e.g. MFG01. 

With Designer/2000 Release 1.3 it used to be a good idea to specify Tablespaces as substitution 
variables, e.g. &&ASSET01, which could then be pointed to appropriate tablespaces using 
DEFINE statements.  This facilitated maintenance of development and test environments that 
might have a different tablespace design than the final production system.  In the current release of 
Designer/2000 it allows for associating a different storage scheme when generating DDL targeted 
at different environments. 

Release 7.1 or later can automatically defragment the tablespace. The trick is to ensure that the 
PCTINCREASE in the default storage of a particular tablespace is a non-zero value. By default, 
the PCTINCREASE is 50%.  Use PCTINCREASE 1. 

2.4.5. Database File 

Database tablespace data file names will be in lower case, and will have the format “<tbs>nn.dbf” 
where <tbs> is the tablespace name (optionally abbreviated) with underscores eliminated, and nn 
is a two digit integer.  Examples of tablespace datafile names include “system01.dbf” and 
“casex03.dbf”. 

2.4.6. Rollback Segments 

The standard set of rollback segments include rbs01, rbs02, rbs03, and rbs04.  Optionally, an 
rbsbig may exist and be brought online by a batch process.  Rollback segments in general are set 
up by a DBA and their names and uses are set by a DBA on a case by case basis. 

2.4.7. Database Control Files 

Use controlnn.ctl where nn is a two-digit integer starting at 01 to uniquely identify the copy of the 
control file.  A minimum of 2 control files is created for each database.  Control files will be 
stored in a directory of the form /uxx/oradata/<SID> where xx is another two-digit integer. 

    
© ANZUS Technology International, 1999  Paper #448 Page 11 

 



Oracle Database Standards You Can Use Now 

2.5. Database Objects Naming Standards 

Database objects include  

• Tables 
• Views 
• Columns 
• Indexes 
• Synonyms 
• Procedures 
• Packages 
• Triggers 
• Schemas (Users) 
• Sequences 
• Roles 
• Foreign Key Constraints 
• Primary Key Constraints 
• Database Control Files 
• Redo Log File 
• Cluster ( in conjunction with DBA only) 

2.5.1. Tables 

Table names should be short but meaningful.  Although Oracle allows up to 30 characters, table 
names should normally be between 12-18 characters and never more than 26.  Use standard 
abbreviations4 where possible and use underscores to separate words (e.g. MFG_SPECS instead of 
MANUFACTURING_SPECIFICATIONS or MFGSPECS).   

Avoid generic meaningless table names like DETAIL_DATA, TMP3 or NEWSTUFF. 

The CASE repository default is to use plural table names, e.g. ORDERS based on the entity 
ORDER, and this should be followed. 

Table names must be unique throughout an application and describe their full significance within 
the organization, not just within the application.  For example, within a purchasing system, use 
PURCHASE_ORDER_SENT or PURCH_ORDER_SENT instead of just ORDER. 

Within an organization a table should be uniquely named for practical reasons of managing the 
database.  The logical reason for this is if two applications contain tables with the same name they 
should logically contains the same information and should be sharing the same data.  However, in 
the real world it may not always be possible to closely integrate tables in this way and the naming 
conventions must allow for this. 

Table names should follow these rules: 

• Table names should be plural (correctly spelled) 
• Table names should be prefixed by application acronym 
• Table names will use underscores between words 
• Table names should not be longer than 26 characters 
• Tables generally should not have more than 20 - 30 columns 
• Each table should have comments 
• Table storage definitions should be appropriate to anticipated table use; it is normal for 

                                                           

    
© ANZUS Technology International, 1999  Paper #448 Page 12 

 

4 See Appendix A. 



Oracle Database Standards You Can Use Now 

storage clauses to be adjusted over time 
• Every table should have a primary or unique key, preferably numeric single column 
• If no reasonable key can be constructed from data, use surrogate enforced by Oracle 

sequence.  If loading legacy data, the sequence can start high to allow for externally setting 
the key in the initial data load. 

2.5.2. Table Short Names 

Table Short Names or Table Aliases (I use these interchangeably) will usually be identical to the 
entity short names that the tables implement.  The exceptions to this are tables that implement 
more than one entity, are a vertical or horizontal partition of an entity or did not exist as entities at 
all.  

Table names are given a shorter alias (table short name) for use in prefixes or as components of 
index, primary key or foreign key names.   

The table short name (alias) should be formulated in exactly the same fashion as used to determine 
entity short names.  (See Page 7). 

For example: 

TABLE NAME ALIAS 
PROCESSES PROC 
PROCESS_REGISTERS PRRE 
PROCESS_PARM_REGISTERS PPRE 
PROCESS_PARM_REGISTER_TYPES PPRT 

 

2.5.3. Column Names 

2.5.3.1 Columns should honor the following guidelines: 

• Column names must be unique within a table. 

• Columns names should not be longer than 26 characters 

• Column names should be meaningful, use standard abbreviations, and use the correct 
datatype 

• Always use VARCHAR2 for text fields, even for columns of with a data length of 1 
– VARCHAR2(1).   The CHAR datatype should not be used unless COBOL 
programs are involved (and even then, why not make the programs handle the 
translation rather than using CHAR instead of VARCHAR2?).  

• NUMBER columns should use correct precision, e.g. NUMBER(14).  Don’t use 
NUMBER without a precision.  This is because the NUMBER datatype defaults to 
NUMBER(max), where max is system dependent.  Migration to a new machine 
could affect the database. 

• Queryable columns should be forced to upper case. 
 

 

    
© ANZUS Technology International, 1999  Paper #448 Page 13 

 



Oracle Database Standards You Can Use Now 

Column names will NOT be prefixed by the table short name.  Not that the Designer/2000 (1.3) 
Database Design Wizard will prefix all column names by default unless this function is switched 
off.  Designer/2000 2.1 has an option for prefix generation for column names.  This should be off. 

2.5.3.2 Table-specific column prefixes  

Table-specific column prefixes (Table Alias Prefix) should not be used because: 

• They lengthen the column name unnecessarily 
• Not using column prefixes strongly encourages adherence to naming standards 
• Adherence to SQL programming standards can eliminate the need for column 

prefixes if the use of aliases is required within each SQL statement. 

Columns prefix is an option that can be set when you run the Database Design Transformer in 
Designer/2000.  Make sure it is deselected prior to running the DDT. 

2.5.3.3 Standard Suffixes 

It is useful to use a standard suffix to identify common types of fields.  The use of these is 
optional, but a consistent approach should be used throughout a given application.  They should 
always be used in "Corporate Tables". 

_CODE a code that is known and used by a user to identify an object (usually an 
alphanumeric code), e.g. MFG_CODE. 

_NBR A number code that is known and managed by the user, e.g. PART_NBR. 

_ID, ID A system generated unique number used internally within the application and 
not usually known by the user.   This is usually generated by a sequence.  For 
primary key columns, the column name will be <table alias>_ID; for foreign 
key columns, the column name will be <referenced table alias>_ID. 

_FLAG A field used as a Flag field to indicate a specific sub-type or role as identified 
during the analysis phase. 

_FLAG_YN A flag for a field in which 'Y' or 'N' are the only allowed values (default Y) 

_FLAG_NY A flag for a field in which 'Y' or 'N' are the only allowed values (default N) 

_DATE Always postfix a date field, i.e. use SHIP_DATE, not 
DATE_SHIPPED  

2.5.3.4 Primary Key Column Names 

Numeric single-column primary key names should be <table alias>_ID, e.g. EMP_ID.5   For a 
surrogate key column, this is the default setting in Designer/2000.  If this option is deselected, no 
prefix is generated and the surrogate key column name is set to 'ID'. 

                                                           

    
© ANZUS Technology International, 1999  Paper #448 Page 14 

 

5 I used to prefer simply ID because in a SQL statement the table alias is generally employed, e.g. SELECT .. FROM 
EMP.ID .. is clear and less messy than SELECT .. FROM EMPL.EMPL_ID .. Also this distinguishes 
primary keys from foreign keys which always have the table alias prefix.  However, as it is common practice to name a 
PK column with the table alias prefix I will bow to that custom.  Either way is acceptable as long as it is consistently 
used throughout the enterprise.  



Oracle Database Standards You Can Use Now 

2.5.3.5 Foreign Key Constraint Column Names 

Foreign key columns will be the referenced primary key column prefixed with the referenced 
table's short name:  <referenced table alias>_<referenced primary key column>, e.g. a foreign key 
column from EMP to DEPT should be named EMP_DEPT_ID.  This is the default setting for the 
“Database Design Transformer” in the current Designer/2000 release. 

 An advantage of including referenced (parent) table names in the foreign key name is so that 
potential joins can be spotted quickly and the columns involved identified.  This aids system 
maintenance and QA significantly. 

In the case where a primary key occurs in a table as the foreign key more than once, you must 
ensure that some indication of the relationship is added to the column name so that they can be 
distinguished. 

2.5.3.6 Audit Columns 

 Audit Columns, often called the "Fab four" or “Who” columns should exist on every table unless 
the table is read-only.  They may have other names then those listed below.  Just be consistent.  
These columns are as follows: 

 
CREATE_DATE   DATE   DEFAULT SYSDATE  NOT NULL 
CREATED_BY        VARCHAR2(30)DEFAULT USER   NOT NULL 
UPDATE_DATE    DATE                   NULL 
UPDATED_BY    VARCHAR2(30)           NULL 

 

Note: A trigger on the table can be created to prevent unauthorized changes to the 
CREATE_DATE and CREATED_BY fields and to automatically populate the UPDATE_DATE 
and UPDATED_BY fields. 

2.5.4. Column Order In Table 

The ordering of columns within tables should be: 

• not null columns should be first in table (usually PK, then FK) 
• Audit columns (not null first)  
• LONGS or VARCHAR2 with a length > 80 should be last in table. 

If you are expecting to populate a lot of NOT NULL columns after initial row insertion it can be 
efficient for space usage to put those columns before the last NOT NULL column in the table. 

2.6. Constraints 

2.6.1. Primary Key Constraints 

• Primary key constraint names will be of the form  <table alias>_PK.  

• Each table should have a primary key – database will enforce with unique index 
(DDL to create key should specify using index) 

                                                                                                                                                                             

    
© ANZUS Technology International, 1999  Paper #448 Page 15 

 

 



Oracle Database Standards You Can Use Now 

• Where possible, primary keys should be numeric non-intelligent columns populated 
by sequences 

• Rules for non-numeric keys will be covered in the expanded document. 

• Composite primary keys are discouraged 

• Rules for composite keys: type of columns, number of columns, order of columns 
will be discussed in the expanded document. 

• Rules for use of primary keys vs. unique keys will be discussed in the expanded 
document. 

• The database max of 16 key components is way too high 

• Scripts to create primary key constraints should be created separately as ALTER 
TABLE scripts rather than in-line constraints. 

2.6.2. Unique Key constraints 

• Unique key constraint names will be of the form <table alias>_UK or <table 
alias>_<meaningful name>_UK. 

• A unique constraint allows null column values so long as the other component 
remains unique across the entire data set. 

• As with primary keys, the database creates indexes to enforce the unique constraint. 

2.6.3. Foreign Key Constraints 

• Foreign key constraint names will be of the form <referencing table 
alias>_<referenced table alias>_FK  

• For multiple keys append number to end of name: <alias>_<alias>_FK. 

• The foreign key column would be <referenced table alias>_ID 

• Scripts to create foreign key constraints should be created separately as ALTER 
TABLE scripts rather than in-line constraints. 

• rules for creating indexes on FKs will be covered in the expanded document. 

2.6.4. Check Constraints 

Check constraint names will be of the form <table alias>_<meaningful name>_CC. The 
meaningful name is a mnemonic for the function of the for the check key constraint, e.g. 
PROC_START_B4_END_CC to enforce a start date before an end date. 

2.7. Indexes 

Primary Key and Unique Indexes will be created as the direct result of the appropriate referential 
integrity constraint and will therefore be named for the constraint.  Any additional indexes created 
will be named in a similar fashion to constrain names, in the form <table alias>_<meaningful 
name>_X.  The meaningful name says something about the purpose of the index.  In those cases 
where the index is provided to access the table by a specific foreign key use be the short name of 
the table for which this is a foreign key. 

• Unique indexes that are used to enforce primary or unique constraints should be created by 
the database via then USING INDEX clause on constraint definition 

• Enforcing index names will have the same name as the constraint that they enforce 

    
© ANZUS Technology International, 1999  Paper #448 Page 16 

 



Oracle Database Standards You Can Use Now 

• Non-unique indexes should be named: <table_alias>_I 
• Non-unique indexes should be established for query purposes  
• There is a need to establish boundaries for when to allow indexes, balance query performance 

vs. insert, update 
• Index storage definitions should be appropriate to anticipated table/index use; it is normal for 

storage clauses to be adjusted over time 
• Indexes should be created in a separate tablespace from the associated data 
• Note if the index is created with no data in the table then the storage parameters, PCTFREE 

and PCTUSED are ignored. Index storage needs to be reviewed after installation. 
 
JS: This gets into tuning & use of indexes.  Some stuff is in white paper, e.g. overloaded index, 
bit-mapped index and optimizer usage, etc. 

 

2.8. Views 

View names conform to the same general requirements as table names.  Their names should 
reflect the function of the view, not the names of the underlying tables, and will be suffixed 
with _V to distinguish them from tables, unless the view defines a subtype of the base table. 

Where a view has been created to implement a sub-type, or to provide a horizontal and/or vertical 
partition of a table (typically as a result of security requirements), a synonym will be created on 
the view, omitting the _V suffix.  The application should always access the synonym, rather than 
directly accessing the view, in order to avoid change if the view is ever instantiated.  For example 
EMPLOYEE can be a subtype of the PARTY entity and is a synonym to the EMPLOYEE_V view 
on the PARTIES table.  

It will be usually be necessary to create a number of complex join views to enhance application 
and network performance.  These views will always be accessed using the _V suffix, in order to 
alert users to the fact they are using a view. 

• View names should be prefixed by application acronym and suffixed with _V 

• View names will use underscores between words 

• View names should not be longer than 26 characters 

• Views should be limited in the number of columns they return 

• View should not have a large number of columns 

• Each view should have comments. 

2.9. Temporary and Working Tables 

Temporary tables are created and dropped for temporary usage by applications and their names 
should be of the form <meaningful name>_TMP, e.g. INV_SEARCH_TMP. 

Working tables are permanent tables that hold transient data.  They should have names of the form 
<meaningful name>_WRK, e.g. INV_SEARCH_WRK.  It is expected that working tables be 
maintained by a given application which is responsible for populating and deleting rows.  There 
can be significant system overhead on loading and unloading working tables.  Use TRUNCATE 
whenever possible instead of DELETE FROM. 

Temporary and work table names should be prefixed with the application system acronym. 

    
© ANZUS Technology International, 1999  Paper #448 Page 17 

 



Oracle Database Standards You Can Use Now 

2.10. Synonym Naming and Use 

2.10.1. Public Synonyms 

Public synonyms should be the primary means by which the application system locates application 
database objects. 

2.10.2.  Private Synonyms 

Private synonyms are used principally within development and testing databases where the 
likelihood of multiple copies of application objects existing in multiple schemas is high and hence 
the value of public synonyms is low and potentially transient.  (Remember private synonyms take 
precedence over public synonyms.) 

2.10.3. Naming Conflicts 

Synonyms will be used as required to resolve naming conflicts between custom-developed and 
third party database objects that reside in the same Oracle database. 

2.11. Sequences 

Sequence names will be of the form <table alias>_<attributed name>_SEQ, e.g. 
MASP_ID_SEQ. 

• sample select statement 
• What about dev to test to prod? 

2.12. Database Triggers 

Trigger names will be of the form <table alias>_<trigger type>_TRn, where n is an optional 
identifier starting at 1, e.g. PART_BUT_TR1 (PARTY table before update trigger #1; future 
releases of Oracle will allow multiple triggers of the same type).  

Trigger types execute on database events: 

• Before or After Statement (B or A)  
• Insert, Update or Delete (I, U or D) 
• For each Row or for the entire Table (R or T) 

 

Therefore trigger type would be one of the following: BIR, BIT, AIR, AIT, BUR, BUT, AUR, 
AUT, BDR, BDT, ADR, ADT. 

Note: Definitely avoid putting code directly in triggers unless it is very simple, i.e. limited to 10 
lines or less.  Use packages instead and call these from the trigger. 

2.13. PL/SQL Packages 

Packages will be named to reflect their utility, e.g. DW_UTILS. 

See Feuerstein 
 

    
© ANZUS Technology International, 1999  Paper #448 Page 18 

 



Oracle Database Standards You Can Use Now 

2.14. Domains vs. Codes 

2.14.1. Guidelines for Defining Domains 

Domains should not be defined for highly volatile codes and/or descriptions.  Instead, more 
traditional code tables should be used to maintain these values.   

Further, domains should not be defined for code tables that will hold more than 250 values.  In 
such cases, the List of Values processing which would be performed on domains would result in 
unsatisfactory performance.  

2.14.2. Guidelines for Generating Domains 

The domain values MUST BE loaded before a module, which refers to the domain, can be run.   

The lengths of several columns have been shortened, to agree with the maximum lengths that can 
be specified via CASE.  

2.15. Coding Standards (SQL and PL/SQL) 

 

    
© ANZUS Technology International, 1999  Paper #448 Page 19 

 



Oracle Database Standards You Can Use Now 

3. Programming Standards 

3.1. Coding Principles 
 

1. Code must be readable (and well-commented) to be maintained.  

2. Tools such as Oracle Forms, Oracle Reports and PL/SQL are used whenever possible.  Avoid 
using PRO*C, user exits, and other complexities or other languages. 

3. Fast performance is critical on a network, particularly a WAN.  

4. Software must be properly versioned and archived. 

5. Avoid platform-specific code unless absolutely necessary.   

6. Platform-specific code should be modularized and the interface well documented. 

7. All programs should be subject to design walk-through prior to coding and code walk-through 
after coding. 

8. Employ reusable code wherever possible. 

 

3.2. Coding Standards 

1. When coding in PL/SQL always use packages, not procedures and functions.  Explain further. 

2. Use standard prefixes for sub-system names, then use one, two or three words to name the 
package, like SPEC_NAME_SEARCH. Try to use descriptive verb or noun procedure and 
function names, like SEARCH or GET. 

3. Always define PRAGMA RESTRICT_REFERENCES for all packages. 

4. Use uppercase for PL/SQL and SQL verbs, lower case for everything else. 

5. Include a Version function in every package that returns the Version string (e.g. from PVCS, 
$Header$). 

6. Do not create unwieldy cross-reference packages.  If there are common routines, pull them 
out into common packages. Most normal packages should have only a few entry points and 
only a few variables exposed.  

7. Always populate the "Fab Four" (often called the “Who” fields) audit columns, unless the 
table is strictly insert only, read only, or for some other overriding reason 

 

    
© ANZUS Technology International, 1999  Paper #448 Page 20 

 



Oracle Database Standards You Can Use Now 

4. Design Standards 

    
© ANZUS Technology International, 1999  Paper #448 Page 21 

 



Oracle Database Standards You Can Use Now 

5. File Naming 

5.1. File Extensions 

Always use the default file extensions expected by the Oracle Products where appropriate.  The 
following list is not exhaustive (yet). 

Tool/Application File Type File Extension 
SQL*PLUS procedures .sql 
 spooled files .lst 
 table definition source files .tab 
 constraint definition source files .con 
 index definition source files .ind 
 sequence definition source files .seq 
   
SQL*REPORT Definition files (binary) .rdf 
 Definition  files (text) .rpf 
 list files .lis 
   
Reports 2.5 source files - binary .rdf 
 source files - textual .rex 
 Executables .rep 
   
Forms 4.5 source files - binary .fmb 
 source files - textual .fmt 
 Executables .fmx 
 menu source files - binary .mmb 
 menu source files - textual .mmt 
 menu executables .mmx 
   
PL/SQL library files - binary .pll 
 library files - textual .pld 
 library files - executable .plx 
 Database procedure source files .prc 
 Database trigger source files .trg 
 Database packages source files .pkg 
 Database packages definition source files .pls 
 Database packages body source files .plb 
   
SQL*Loader control files .ctl 
 log files .log 
 input data files .dat 
 'bad data' files .bad 
 discard files .dsc 

    
© ANZUS Technology International, 1999  Paper #448 Page 22 

 



Oracle Database Standards You Can Use Now 

Appendix A. Some Abbreviations and Acronyms 
 
All sites should establish something like this.  You don’t have to use these, but you do have to use 
something, although I am particularly partial to avoiding _NO for “number” and using _NBR instead. 

 

Acronym or 
Abbreviation 

Meaning/Full Word  Acronym or 
Abbreviation 

Meaning/Full Word 

ABBR Abbreviation  MFG Manufacturing 
ACC Account  MON Month  
ACK Acknowledgement  NBR Number 
ADDR Address  NO “NO” as in Negative 

(Number is 
abbreviated NBR) 

ADMIN Administration  ORIG Original 
AI Activity and 

Inventory 
 PARTY Party 

AMT Amount  PCT Per Cent 
ASS Asset  PHONE Telephone 
AVG Average  PMT Payment 
BAL Balance  PREV Previous 
CLI Client  PROD Product 
CNT Count  QUAL Quality 
CORP Corporate  RCPT Receipt 
CTRY Country  RES Residence 
CTY County  SEQ Sequence 
DOB Date of Birth  SPEC Specification 
EFF Effective (e.g. 

EFF_DATE) 
 TLA Three Letter 

Acronym 
EMP Employee  TOT Total 
EXT Extension  VAL Value 
FRQ Frequency  YR Year 
HIST History    
INC Income    
INIT Initial    
INSP Inspection    
IS Information 

Services 
   

IT Information 
Technology 

   

LEN Length    
MES Manufacturing 

Execution System 
   

    
© ANZUS Technology International, 1999  Paper #448 Page 23 

 



Oracle Database Standards You Can Use Now 

Appendix B. Code Tables 
 

Where a number of lookup codes are required in an application system a single master table should be used 
instead of many small tables.  Views are used to reference distinct code types.  A Master Code Table is 
often a Corporate table and its contents are subject to strict change control.  Maintaining a single code table 
centralizes the maintenance of  corporate codes. 
 
A sample master code table follows: 

 
 CREATE TABLE CODES  
 ( 
   CODETYPE  VARCHAR2(10)        NOT NULL, 
   CODE               VARCHAR2(10)        NOT NULL, 
   CREATED_ON    DATE   DEFAULT SYSDATE  NOT NULL, 
   CREATED_BY   VARCHAR2(30) DEFAULT USER      NOT NULL, 
   LAST_UPDATED_ON DATE, 
   LAST_UPDATED_BY VARCHAR2(30), 
   DESCR            VARCHAR2(100), 
   ALIAS          VARCHAR2(10), 
   END_DATE     DATE 
 ) 
 

Each distinct CODETYPE groups codes into a generic group.  The CODETYPE='CODE' contains the 
names of all generic code types contained in the CODES table.  A discontinued code has an end date.  A 
discontinued code that may be in the table for referential purposes, but is superseded for INSERT, would 
have an ALIAS defined that pointed to the up-to-date code value.   Note that a unique constraint must exist 
on ALIAS and CODETYPE. 
 
Constraints on the CODES table are that all CODETYPES are members of the CODETYPE='CODE' 
group and that each ALIAS exists as a valid code and has an end date.  Note the presence of the “who” 
columns used for an audit trail.  Codes should always be modified by proper authority after impact analysis 
and should never be deleted once in production.  The Primary Key for this table is CODETYPE + CODE.  
ALIAS along with its CODETYPE is a self-referencing foreign key constraint. 
 
As needs require other columns could be a part of this table, e.g. an ALLOWABLE_LENGTH,  
LONG_DESCR or a DISPLAY_FLAG. 
 
A particular code type often represents a domain, and is referenced from a view, e.g. an LOV for all 
currently valid CUSTOMER TYPE codes would be populated by a ‘SELECT *’ from the following view. 

 
CREATE OR REPLACE  VIEW cust_type_v 
AS 
   SELECT code,  
          descr 
     FROM codes 
    WHERE codetype = 'CUST_TYPE' 
      AND alias IS NULL 
      AND end_date IS NULL 
/ 

 
 

    
© ANZUS Technology International, 1999  Paper #448 Page 24 

 



Oracle Database Standards You Can Use Now 

    
© ANZUS Technology International, 1999  Paper #448 Page 25 

 

An example of a code table is: 
 
SQL> select codetype,code, descr, alias from codes 
  2  order by DECODE(CODETYPE,'CODE','  ',CODETYPE) 
  3  / 
 
CODETYPE   CODE       DESCR                ALIAS 
---------- ---------- -------------------- ---------- 
CODE       CUST_TYPE  Customer Type 
CODE       CITY       City Code 
CITY       SEA        Seattle 
CITY       PDX        Portland 
CITY       LAX        Los Angeles 
CUST_TYPE  GOOD       Good Customer 
CUST_TYPE  BAD        Bad Customer 
CUST_TYPE  UGLY       Very Bad Customer    BAD 

 
The SELECT statement below will return the correct code and description even if an obsolete code is used 
as the target code. 

 
SELECT code, descr 
  FROM codes 
 WHERE codetype = 'CUST_TYPE' 
   AND code = :target 
   AND alias IS NULL 
   AND end_date IS NULL 
UNION ALL 
SELECT code, descr 
  FROM codes 
 WHERE codetype = 'CUST_TYPE' 
   AND code IN ( SELECT alias 
                   FROM codes 
                  WHERE codetype = 'CUST_TYPE' 
                    AND alias IS NOT NULL 
                    AND code = :target) 

 
It is easy to see that this concept can support a number of variations on the theme including triggers, a 
package and stored procedures for query and insert.  It is not unreasonable to restrict a code table like this 
to query and insert only, keeping the audit trail for all discontinued codes.  Triggers could enforce 
particular constraints (e.g. an ALIAS must also exist as a valid CODE, new codes must conform to a 
particular length, or be uppercase, etc.). 


	Prerequisite
	Objectives
	Abstract
	Introduction
	Why Bother With Standards?
	How Far Should a Company Go?

	Naming Standards
	General Naming Conventions for Oracle Databases
	Designer/2000 Naming Standards
	Designer/2000 Application Systems
	Entities
	Entity Short Names
	Attributes and Domains
	Business Functions
	Module Names

	Program Objects Naming Standards
	Program names
	Oracle*Forms Objects Names
	Blocks
	Items
	Record Groups and LOV's
	Windows and Canvasses

	Oracle*Reports Object Names

	DBA Naming Standards
	Database Name
	Database Control Files
	Redo Log File
	Tablespace
	Database File
	Rollback Segments
	Database Control Files

	Database Objects Naming Standards
	Tables
	Table Short Names
	Column Names
	Columns should honor the following guidelines:
	Table-specific column prefixes
	Standard Suffixes
	Primary Key Column Names
	Foreign Key Constraint Column Names
	Audit Columns

	Column Order In Table

	Constraints
	Primary Key Constraints
	Unique Key constraints
	Foreign Key Constraints
	Check Constraints

	Indexes
	Views
	Temporary and Working Tables
	Synonym Naming and Use
	Public Synonyms
	Private Synonyms
	Naming Conflicts

	Sequences
	Database Triggers
	PL/SQL Packages
	Domains vs. Codes
	Guidelines for Defining Domains
	Guidelines for Generating Domains

	Coding Standards (SQL and PL/SQL)

	Programming Standards
	Coding Principles
	Coding Standards

	Design Standards
	File Naming
	File Extensions


